Mistletoe infection alters the transpiration flow path and suppresses water regulation of host trees during extreme events

Anne Griebel¹, Chelsea Maier¹, Craig VM Barton¹, Daniel Metzen^{1,2}, Alexandre Renchon¹, Matthias M Boer¹ and Elise Pendall¹ (1) Western Sydney University, Hawkesbury Institute for the Environment, Richmond, Australia (2) The University of Melbourne, Parkville, VIC, Australia

Overview

- 1) Background on mistletoes
- 2) Assumptions
- 3) Water use of mistletoes
- 4) Ecosystem implications of mistletoe infection
- 5) Mistletoe and tree mortality

Background on mistletoes

Establishment

- spread by birds
- hemi-parasite that relies on host tree
- > attaches to branch and taps into xylem
- redirects carbon, nutrients and water
- forms dense branch structure

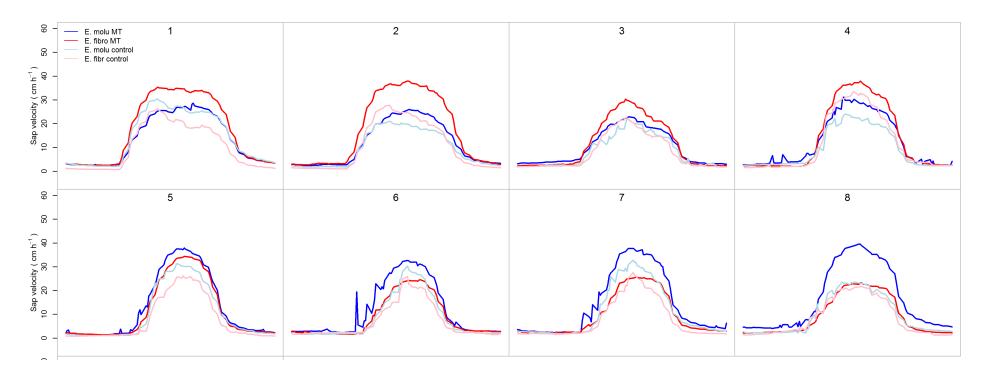
Benefits of mistletoe presence

- fertilization effect on soil through high leaf turnover
- keystone species for floral and faunal biodiversity

Background on mistletoes

Mistletoe physiology

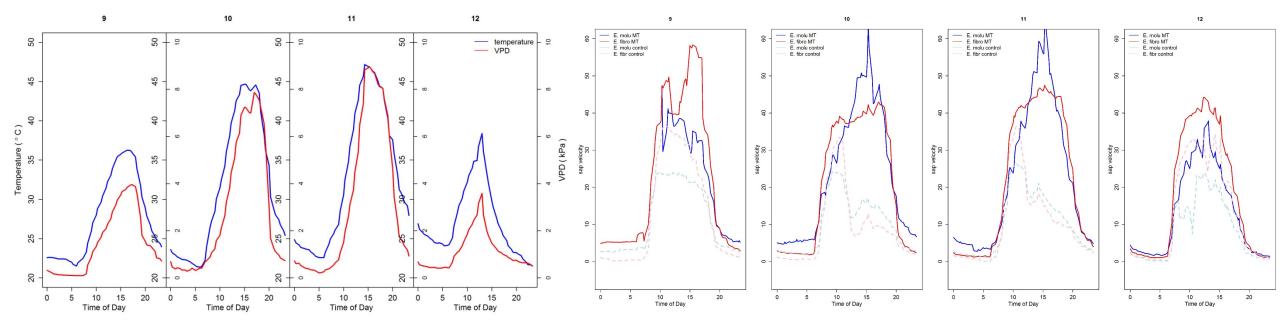
- Iower photosynthesis rates
- maintains lower water potentials
- minimal to no stomatal regulation
- higher transpiration rates
- cooling effect on the ecosystem
- Favourable microclimate in mistletoe clumps during warm days


Photo from AU-Cum tower by Wouter Maes Photo from Skye Wassens

Assumptions

Mistletoe redirects water flow path in host tree

- maintains lower water potentials to redirect water towards mistletoe branch
- higher water flow towards infected branches vs. uninfected branches
- exaggerates water stress in host branches
- increased stomatal closure of host leaves
- water leaks out through the mistletoe
- higher overall water use of infected vs. uninfected trees


Water use of mistletoes (monthly scale)

monthly diurnals of sap velocity from infected vs. uninfected trees

- infected trees have higher water use than uninfected trees in every month
- uninfected trees show decreased sap velocity rates in the arvo in warm months (January – April)

Water use of mistletoes (extreme heat)

- 4 days during extreme heat in February 2017
- peak air temperature: 47 °C / 117 F
- peak vapour pressure deficit: >9 kPa
- sap velocity measurements indicate unregulated water use of infected trees
- water use of uninfected trees declines with increasing VPD

Ecosystem implications

	weeks/months	1 year	10 years	decades
Parasite effects	infection	establishment	spatial propagation	ecosystem changes
Tree Physiology	↑ branch conductivity ↑ leaf volume	 ↑ leaf turnover ↑ canopy conductance ↓ canopy volume 	 ✓ stand health ✓ stand conductance ✓ individual mortality 	 ↑ multiple mortality ↑ species succession
Water	 ↓ MT water potential → host water potential 	 ↑ transpiration ↓ evaporation 	transpiration evaporation	↑ water cycling
Energy	↑ latent heat flux ↓ sensible heat flux	 ↑ latent heat flux ↓ sensible heat flux 	 ↓ latent heat flux ↑ sensible heat flux 	∱Bowen ratio
Carbon	\rightarrow photosynthesis	 photosynthesis NSC depletion carbon starvation 	↑ litterfall ↑ carbon cycling	 ↑ woody debris ↑ carbon cycling
Nutrients	↑ MT nutrients ↓ host nutrients	↑ MT nutrients ↓ host nutrients	↑ litterfall ↑ nutrient cycling	 ↑ woody debris ↑ nutrient cycling
Faunal diversity	→ unchanged	↑ insect diversity	↑ avifauna diversity	↑ faunal diversity
Floral diversity	→ unchanged	→ unchanged	↑ understorey diversity	↑ overstorey diversity
Parasite impact	branch level	tree level	stand level	ecosystem level

Griebel et al., 2017 Environmental Research letters

Ecosystem implications

	weeks/months	1 year	10 years	decades
Parasite effects	infection	establishment	spatial propagation	ecosystem changes
Tree Physiology	↑ branch conductivity ↑ leaf volume	 ↑ leaf turnover ↑ canopy conductance ↓ canopy volume 	 ✓ stand health ✓ stand conductance ▲ individual mortality 	 ↑ multiple mortality ↑ species succession
Water	 ↓ MT water potential → host water potential 	↑ transpiration ↓ evaporation	transpiration evaporation	↑ water cycling
Energy	↑ latent heat flux ↓ sensible heat flux	 ↑ latent heat flux ↓ sensible heat flux 	 ↓ latent heat flux ↑ sensible heat flux 	↑ Bowen ratio
Carbon	→ photosynthesis	 ↓ photosynthesis ↑ NSC depletion ↑ carbon starvation 	↑ litterfall ↑ carbon cycling	 ↑ woody debris ↑ carbon cycling
Nutrients	↑ MT nutrients ↓ host nutrients	↑ MT nutrients ↓ host nutrients	↑ litterfall ↑ nutrient cycling	 ↑ woody debris ↑ nutrient cycling
Faunal diversity	→ unchanged	↑ insect diversity	↑ avifauna diversity	↑ faunal diversity
Floral diversity	→ unchanged	→ unchanged	↑ understorey diversity	↑ overstorey diversity
Parasite impact	branch level	tree level	stand level	ecosystem level

Initially increased cooling through LE↑ when too abundant decreased cooling through LE↓

Mistletoe modifies the
 energy balance of the ecosystem

positive + negative feedback with climate change

Griebel et al., 2017 Environmental Research letters

Mistletoe amplifies mortality

- Mistletoe distribution is increasing in SE Australia (*Turner et al., 2016*)
- Mistletoe distribution is shifting northwards with warming climate (*Dobbertin et al.,* 2006)
- Higher mortality in forests with mistletoe in combination with droughts

- Mistletoe infection adds stress on host tree on top of increased climate stress
- With a warming climate extreme heat and prolonged droughts will be more frequent
- > We anticipate that mortality rates in infected forests will increase further

Questions?!

IFR

Terrestrial Ecosystem

Research Network

WESTERN SYDNEY UNIVERSITY

Thank you

Australian

)°Q0

SuperSiteNetwork

Anne Griebel

griebel.anne@gmail.com